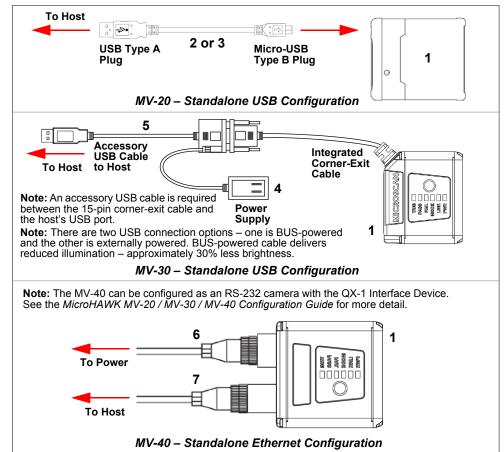
Quick Start Guide MicroHAWK MV-20 / MV-30 / MV-40

OMRON

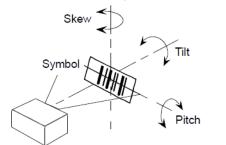
MICROSCAN

Copyright ©2018 Omron Microscan Systems, Inc.


83-9137432-02 Rev E

Step 1 — Check Hardware

Note: Full configuration diagrams are available in the MicroHAWK MV-20 / MV-30 / MV-40 Configuration Guide.


ltem	Description	Part Number
1	MicroHAWK MV-20, MicroHAWK MV-30, or MicroHAWK MV-40	7AXY-YZZZ-LPPP
2	Cable, USB A to Micro B, 6 ft., MV-20	61-9000034-01
3	Cable, USB A to Micro B, 3 ft., MV-20	61-9000045-01
4	Power Supply, 5V	97-900006-01
5	Cable, DB15 to Ext. Power/USB, MV-30	61-9000038-01
6	Power Supply, 100-240VAC, +24VDC, M12 12-Pin Socket	97-000012-01
7	Cordset, Host, Ethernet, M12 8-Pin Plug (Screw-On) to RJ45, 1 m.	61-000160-03

Step 2 — Connect the System

Step 3 — Mount and Position the Camera

- 1. Position the camera at a focal distance of one inch or more from a test object.
- 2. Tip the camera relative to the object to avoid the glare of direct (specular) reflection. The case parting line should be perpendicular to the plane of the symbol by either pitching the symbol or the camera. Avoid excessive skew or pitch. Maximum skew is ±30°; maximum pitch is ±30°

Proper lighting is critical to the success of a machine vision application. Depending on the requirements of your application, you may need to add external lighting from Microscan's NERLITE family of machine vision lighting products. Consider the following:

- Is the surface of the object flat, slightly bumpy, or very bumpy?
- Is the surface matte or shiny?
- Is the object curved or flat?
- · What is the color of the object or area being inspected?
- Is the object moving or stationary?

Machine vision lighting should maximize contrast of the areas or features being inspected while minimizing the contrast of everything else.

Step 4 — Install AutoVISION

AutoVISION can also be installed from the Download Center at www.microscan.com and can also be found on the Omron Microscan Tools Drive that is packaged with the camera.

MICROSCAN

AUTOVISION

- 1. Follow the prompts to install AutoVISION from the Tools Drive.
- 2. Click on the AutoVISION icon to run the program.

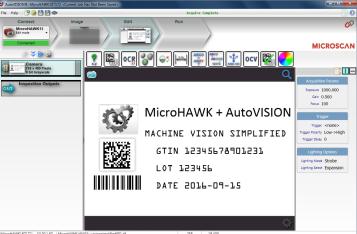
Minimum System Requirements

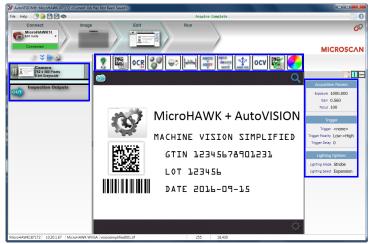
- Intel Core i3 Processor @ 1.6 GHz
- · Internet Explorer 11 or higher / Google Chrome
- 2GB RAM (Windows 7 SP1 / Windows 7 Embedded Standard SP1)
- · 3GB hard drive space
- 32-bit color display, 1366 x 768
- 4.0 Windows Experience Index (particularly for graphics)
- 1 USB 2.0 port and 1 Network port

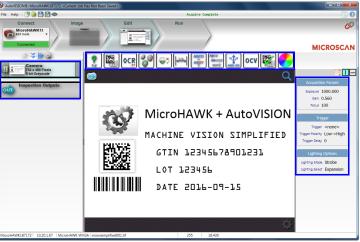
Step 5 — Connect to the Camera


After you launch AutoVISION, you will see the Select a device to start editing a job view. Note: If there is a default job on the camera, AutoVISION will automatically skip the Connect step and you will see the Image view.

- Select your camera from the Select Device dropdown menu. 1.
- 2. Click the **Modify** button beneath the camera settings details to change camera settings.
- Choose whether you want to create a new job, load a job (.avp), or upload a job from the camera. 3.




Note: If you are using an MV-20 or MV-30 with a USB cable, the driver has already configured your PC address. If you are using an MV-40, you must set the PC to the same IP range as the default IP address. Default IP address: **192.168.188.2**. Set the PC to the same IP range (example: **192.168.188.100**).


and set the desired Lighting Mode.

After you have evaluated a captured image and Auto Calibrated the camera in the Image view, you will move to the Edit view. This interface allows you to set camera parameters, add machine vision tools to captured images, set tool parameters, and configure I/O inspection outputs.

Step 6 — Evaluate a Captured Image and Auto Calibrate

You will see the Image view after selecting your device. This view allows you to evaluate your first image capture, providing information such as image size and a histogram. Click the Auto Calibration button to set optimal camera parameters automatically. You can also adjust Exposure, Gain, and Focus as needed,

Step 7 — Create Your First Job with AutoVISION

Step 8 — Explore the Interface

The Edit view features a large image area with tool icons above and tool parameters below or to the right depending on user preference. When a tool is selected, its specific parameters appear. Tools that have been added are shown in the job list to the left of the image area, below Camera. Image settings can be controlled using the icons in the corners of the image area


Step 9 — Set Camera Parameters

- 1. Click on the Camera box to the left of the image area.
- 2. In the camera parameters below the image area, select the desired type of Trigger, Trigger Polarity, Photometry (Exposure and Gain), Focus, and Lighting.

Step 10 — Add Tools to the Job

- 1. Click on the Decode Tool or drag it onto the image area.
- 2. Use the anchor points at the corners of the region of interest to form a box around the Data Matrix symbol. Leave plenty of space on each side of the symbol.
- 3. Now add a second Decode Tool and do the same for the 1D symbol below the Data Matrix symbol.
- 4. Finally, add an OCR Tool and drag the region of interest around the area of the image where "123456" is printed

Step 11 — Try Out the Job

Copyright ©2018 Omron Microscan Systems, Inc.

Once you have configured the tools as desired, use the arrow icons in the Job area to try the job you have just created

Note: Most jobs will inspect multiple captured images. If only one image is being inspected, the effect of the arrow icons will not be evident.

7	Once			
	Tran Orad	1-1		

Trv Out Job in Loop

Try Out Job

Step 12 — Run the Job

02

Test Jobs

clicking the orientation buttons above the inspection results area.

MicroHAWK + AutoVISION

MACHINE VISION SIMPLIFIED

GTIN 12345678901231

LOT 123456

see the help documentation in AutoVISION software.

LOT 123456

VISION SIMPLIFIED

DATE 05/2024

Decode Tool, OCR Tool, Match Strings Tool,

DATE 2016-09-15

String Format Tool

Measure Tool,

Count Tool

When all job parameters are set, click on the Run step at the top of the interface. The software will download the vision job just created to the camera and will begin the inspection. Inspection results and the list of active tools


are shown at the right of the image view. That information can also be moved below the image area by

24

Note: For descriptions of more advanced functionality, such as setting Inspection Outputs or using the Locate Tool and Decode Tool's Dynamic Locate functionality to track multiple tools from image to image

Measure:

Measure the distance between the jaws of the caliper gauges at left.

(A) Model 1: Engine, No Case, USB 2: MV-20, IP40 Case, USB 3: MV-30, IP54 Case, 5V, USB 4: MV-40, IP65 Case, 24V, Ethernet

(B) Application Type 1: Auto ID and Machine Vision

0: Custon 1: Standard Density - 5 mm Focal Length

000: Autofocus 050: 50 mm = 1.96 in. 102: 102 mm = 4.02 in. 190: 190 mm = 7.48 in.

(L) Illumination 0: Inner LEDs Only 1: Red Outer LEDs 2: White Outer LEDs

(PPP) Software License Bundles 100: AutoVISION Se 101: AutoVISION 102: AutoVISION + Visionscape

103: AutoVISION + Verification 104: AutoVISION + Verification + Visionscape Notes:

Power Requirements and Pin Assignments

MicroHAWK MV-20 Micro-USB Type B Socket

	Pin	Function
	1	Vbus (5V)
нинин	2	D-
1 2 3 4 5	3	D+
	4	N/C
	5	Ground

USB/Serial Socket

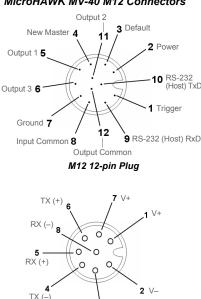
Note: An accessory cable is required between the MV-30' 15-nin corner-exit cable and the host's USB port.

7 = MicroHAWK Example Part Number: 7412-2000-2104

Description: MicroHAWK MV-40, IP65 Case, 24V, Ethernet, Machine Vision, SXGA, 1.2 Megapixel, Mono, High Density Autofocus, White Outer LEDs, AutoVISION + Verification + Visionscape.

(X) Sensor 1: WVGA 0.3 Megapixel, Mono 2: SXGA, 1.2 Megapixel, Mono 3: QSXGA, 5 Megapixel, Color

(Y) Optics


(ZZZ) Focus Distance **300:** 300 mm = 11.81 in.

MicroHAWK MV-20: 5VDC ± 5%; 350mA at 5VDC (typ.) MicroHAWK MV-30: 5V ± 5%; 600mA at 5VDC (typ.) MicroHAWK MV-40: 4.75V - 30V; 150mA at 24VDC (typ.

Important: See the MicroHAWK MV-20 / MV-30 / MV-40 Smart Camera Guide for full electrical specifications. MicroHAWK MV-40 M12 Connectors

MicroHAWK MV-30 High-Density 15-Pin Dsub

	Pin	Function
	1	+5VDC
	2	TX232
	3	RX232
	4	GND
	5	D+
	6	N/C
	7	Output 1+
	8	Default+
5	9	Trigger+
	10	D-
	11	Output 3+
	12	Input+ (New Master+)
	13	Chassis
	14	Output 2+
	15	Vbus

M12 8-Pin Socket (Ethernet)

MicroHAWK MV Part Numbers

MicroHAWK MV part numbers follow the format 7ABX-YZZZ-LPPP

2: High Density – 8 mm Focal Length 3: Ultra-High Density / Long Range – 16 mm Focal Length

• (A) Model: The MicroHAWK Engine is available for OEM-certified partners only.

 (L) Illumination: Outer LEDs provide extra illumination. Base level illumination included with all cameras · Field Upgrades: Not available for optics or illumination due to factory settings for optical alignment, LED balancing, and sealing for IP enclosure rating. However, the camera's software is field-upgradeable via licenses